Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing Wang and Song-Lei Zhu*

Department of Chemistry, Xuzhou Medical College, Xuzhou 221002, People's Republic of China

Correspondence e-mail:
songleizhu@sina.com.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.057$
$w R$ factor $=0.165$
Data-to-parameter ratio $=13.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(4-Fluorophenyl)-3-methyl-6-oxo-1-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile

The title compound, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{O}$, was synthesized by the reaction of 5-amino-3-methyl-1-phenylpyrazole with ethyl 2-cyano-3-(4-fluorophenyl)-1-acylate in glycol under microwave irradiation. The tetrahydropyridine ring adopts a distorted envelope conformation. The pyrazole ring forms a dihedral angle of $39.2(3)^{\circ}$ with the attached phenyl ring.

Comment

The pyrazolo[3,4-b]pyridine system has many interesting biological and pharmacological properties and is used in the treatment of a wide variety of stress-related illnesses (Sekikawa et al., 1973; Kuczynski et al., 1979; El-Dean et al., 1991). As part of our program aimed at employing microwave irradiation for the preparation of heterocyclic compounds (Tu et al., 2004), we have recently synthesized the title pyrazolo[3,4b]pyridine derivative, (I), under microwave irradiation and we report here its crystal structure.

(I)

The molecular structure of (I) is shown in Fig. 1. The tetrahydropyridine ring adopts a distorted envelope conformation, with atom C 1 and C 2 deviating from the $\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{N} 1$ plane by 0.231 (1) and 0.731 (1) \AA, respectively, so that C 2 is the main flap atom. The pyrazole ring forms a dihedral angle of $39.2(3)^{\circ}$ with the attached phenyl ring.

Experimental

A dry flask (25 ml) was charged with 5 -amino-3-methyl-1-phenylpyrazole (2 mmol), ethyl 2-cyano-3-(4-fluorophenyl)-1-acylate (2 mmol) and glycol (1 ml). The unsealed reaction vessel was put into a modified household microwave oven and connected to refluxing equipment. After microwave irradiation for $5 \mathrm{~min}(250 \mathrm{~W})$, the reaction mixture was cooled and washed with a small amount of ethanol. The crude product was filtered off and single crystals of (I) were obtained by recrystallization from a 95% ethanol solution (yield

Received 10 October 2005
Accepted 28 November 2005
Online 7 December 2005
80%). Spectroscopic analysis: IR ($\mathrm{KBr}, \nu, \mathrm{cm}^{-1}$): $3360,3074\left(\mathrm{NH}_{2}\right)$, 2228 (CN), 1703 (CO); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): 2.04 ($3 \mathrm{H}, s$, $\left.\mathrm{CH}_{3}\right), 4.96-5.18(1 \mathrm{H}, m, \mathrm{CH}), 4.68-4.77(1 \mathrm{H}, m, \mathrm{CH}), 7.16-7.81(9 \mathrm{H}$, $m, \mathrm{ArH}), 11.30(1 \mathrm{H}, s, \mathrm{NH})$.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{FN}_{4} \mathrm{O}$
$M_{r}=346.36$
Orthorhombic, $P b c a$
$a=10.856(5) \AA$
$b=8.245(4) \AA$
$c=38.898(17) \AA$
$V=3482(3) \AA^{3}$
$Z=8$
$D_{x}=1.322 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 2536 reflections
$\theta=2.1-21.1^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.45 \times 0.41 \times 0.35 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
17020 measured reflections
3069 independent reflections
1712 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-8 \rightarrow 9$
$l=-34 \rightarrow 46$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.054 P)^{2} \\
&+3.1712 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.057$
$w R\left(F^{2}\right)=0.165$
$S=1.03$
3069 reflections
236 parameters
H-atom parameters constrained

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.368(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.561(4)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.389(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.503(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.532(5)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.351(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$119.8(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	$115.3(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$114.5(3)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$104.9(3)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$109.1(3)$	$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$113.8(3)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$	$111.5(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$121.5(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$115.3(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	$124.9(3)$

Methyl H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and torsion angles refined to fit the electron density, with

The molecular structure of (I), showing 40% probability displacement ellipsoids (arbitrary spheres for H atoms).
$U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. Other H atoms were placed in idealized positions, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors are deeply indebted to Professor S.-J. Tu and Professor D.-Q. Shi for their invaluable help. We also thank the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (grant No. 01AXL14) for financial support.

References

Bruker (1999). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
El-Dean, A. M. K., Atalla, A. A., Mohamed, T. A. \& Geies, A. A. (1991). Z. Naturforsch. Teil B, 46, 541-546.
Kuczynski, L., Mrozikiewic, A., Banaszkiewicz, W. \& Poreba, K. (1979). J. Pharmacol. Pharm. 31, 217-225.
Sekikawa, I., Nishie, J., Tono-oka, S., Tanaka, Y. \& Kakimoto, S. (1973). J. Heterocycl. Chem. 10, 931-932.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Tu, S.-J., Fang, F., Zhu, S.-L., Li, T.-J., Zhang, X.-J. \& Zhuang, Q.-Y. (2004). Synlett, pp. 537-539.

